Vorteile
Möglichkeit, Vorhersagen über Maschinenausfälle zu treffen
Daten
Sensordaten mit historischen Fehler- und Störungsmeldungen
Methode
Deep Learning
Predictive Maintenance mit Deep-Learning-Algorithmen in der Industrie 4.0
Herausforderung
Ein international agierender Maschinenbauer treibt die Digitalisierung seiner Produktion weiter voran. Ein Anknüpfungspunkt: Die datengestützte Optimierung der Instandhaltung. Die dafür zur Verfügung stehende Datenbasis enthält unter anderem Sensormesswerte, welche Fehler- und Störungsmeldungen in unterschiedlichen Zeitintervallen aufweisen. Der Maschinenbauer verfügt dadurch über umfangreiche Informationen, denn über hundert Maschinen mit jeweils mehr als 250 Sensoren liefern kontinuierlich Daten.
Ziel
Das Ziel ist es, den Ausfall von Maschinen frühzeitig zu prognostizieren, um vorbeugende Maßnahmen zur vorausschauenden Instandhaltung einleiten zu können. Anhand der Analyse von Sensormesswerten sollen die Data Science Spezialisten von eoda Abläufe erkennen, die zu einem Maschinenausfall führen können.
Unser Service: YUNA – die moderne Analytikplattform!
Lösung
Der Schlüssel zur verlässlichen Vorhersage von Maschinenfehlern liegt in der Erkennung von wiederkehrenden Datenmustern im Vorfeld der historisch dokumentierten Maschinenstörungen und -ausfälle. In diesem Fall setzten die Data Science Spezialisten auf ein Deep-Learning-Modell. Deep Learning, eine Methode aus dem Bereich des Machine Learning, kann mit künstlichen neuronalen Netzen große Datenmengen von unterschiedlicher Komplexität auf mehreren Ebenen analysieren, um so komplexe Zusammenhänge zu erkennen. Je mehr Daten zum Trainieren des Deep-Learning-Modells genutzt werden, desto präziser werden die Ergebnisse, denn der Lernalgorithmus optimiert sich im Analyseprozess selbst.
Ausgehend von dieser Methode hat eoda ein Multilabel-Klassifizierungs-Model entwickelt, um das Auftreten der spezifischen Fehlermeldungen von Sensordaten zu registrieren. Hierbei wurden mehrere Error-Meldungen in Klassen eingeteilt und für eine deskriptive Analyse bestimmter Zeitintervalle durchgeführt. Dafür wurde die Programmiersprache R gewählt, die sich gerade bei einer Vielzahl von individuellen Variablen für die Durchführung eines Proof of Concept empfiehlt.
Im Vorfeld erfolgte eine Datenvorverarbeitung: Messwerte der Sensordaten aus unterschiedlichen Quellen wurden aggregiert, skaliert und transformiert, damit ein einheitlicher Standard zum Datenvergleich entstehen konnte. Erst durch diesen Schritt waren die Daten analysierbar, da jeder Sensor in unterschiedlichen Intervallen und zu unterschiedlichen Zeitpunkten misst. Diese Messwerte mussten so bearbeitet werden, dass die Daten aus unterschiedlichen Informationsquellen in ein einheitliches Format übertragen werden konnten und auch maschinenübergreifend auf einer Basis sind.
Im nächsten Schritt wurde eine sinnvolle Informationsaufteilung in Trainings, Test und Validierungsdaten geschaffen. Dadurch, dass die Fehler in den Daten ungleich verteilt waren, war es notwendig nicht nur zufällige Stichproben zu ziehen, sondern mit einem Down- bzw. Upsampling zu arbeiten, um eine sinnvolle Verteilung von Fehlern und Nichtfehlern zu erhalten. Der dabei entstehende Lerneffekt durch das Trainieren, Testen und Verifizieren ist der wichtigste Schritt in der Modellbildung – insbesondere um ein Under- und Overfitting zu vermeiden.
Aufgrund des Big-Data-Szenarios und einer langen Berechnungszeit, wurde die cloudbasierte Arbeitsstation Amazon Web Services (AWS) einbezogen, um den Prozess zu beschleunigen. Mit dem ersten Prototyp konnten verschiedene Schichtarchitekturen ermittelt und evaluiert werden. Abweichungen, die auf die Vorverarbeitungsphase zurückzuführen waren, wurden so verbessert. Die technischen Rahmenbedingungen für das Deep-Learning-Framework waren in diesem Fall durch eine Keras API, geschrieben in Python, gegeben, die eine Schnittstelle für die Deep Learning Bibliothek TensorFlow bietet.
Im letzten Schritt wurde die Beurteilung eines Klassifikators nach der relativen Häufigkeit berechnet. Hierzu wurde eine Konfusionsmatrix mit dem Schwerpunkt der Kostenminimierung erstellt. Die aus der Matrix ablesbaren Werte zeigen die Auftrittshäufigkeiten von Merkmalskombinationen.
Ergebnis
Durch das Deep-Learning-Modell von eoda ist der Maschinenbauer in der Lage, Vorhersagen über Störungen an Industrieanlagen zu treffen und proaktiv die entsprechenden Maßnahmen zur Instandhaltung einzuleiten. So werden nicht nur teure und unerwartete Ausfälle vermieden, sondern auch die vorgegebenen Produktionsziele leichter erreicht. Dieser Case ist ein erfolgreiches Beispiel, wie Daten und Algorithmen die Basis für eine zuverlässige und profitablere Produktion bilden können.
Durch die Umsetzung des vorgeschalteten Proof-of-Concept lassen sich nicht nur in kurzer Zeit wichtige Erkenntnisse für die Beantwortung individueller Fragestellungen ermitteln, sondern vor allem auch Aussagen über die Realisierbarkeit und Profitabilität des konkreten Use Cases treffen. Erst im Falle einer positiven Einschätzung erfolgt die Implementierung des Analysemodells in die Geschäftsprozesse.
Case Study:
Predictive Maintenance für TRUMPF
Realisierung eines Predictive-Maintenance-Ansatzes von der Konzeption über den Kompetenzaufbau bis hin zur Entwicklung einer produktiv eingesetzten Plattformlösung.
Use Cases:
Data Science in Ihrer Branche
Optimierte Prozesse, Zeitersparnis und Kostenreduzierung – das sind die Ergebnisse, wenn Data Science erfolgreich eingesetzt wird. Entdecken Sie hier weitere Use Cases und lassen Sie sich inspirieren
Whitepaper:
Wie erschließe ich das Potenzial meiner Daten?
Wie lässt sich der Datenschatz heben? Wie verläuft der Weg von der Idee bis zur erfolgreichen Realisierung und Implementierung eines Data-Science-Projektes? Erfahren Sie es in unserem kostenlosen Whitepaper!
Data Projects:
Von der Idee zum produktiven Service!
Welche Anwendungsfälle sind für Sie besonders spannend? Wie kann der Wissensaufbau in Ihrem Unternehmen gelingen? Von der Lösungsidee bis zum produktiven Einsatz von KI-Systemen in Ihrem Unternehmen: Wir schaffen für Sie aus Daten spürbare Mehrwerte.